Friday, January 31, 2014

25 Best Practice Tips for architecting your Amazon VPC

According to me Amazon VPC is one of the most important feature introduced by AWS. We have been using AWS from 2008 and Amazon VPC from the day it was introduced and i strongly feel the customer adoption towards AWS cloud gained real momentum only after the introduction of VPC into the market. 
Amazon VPC comes with lots of advantages over the limitations faced in Amazon Classic cloud like: Static private IP address , Elastic Network Interfaces :  possible to bind multiple Elastic Network Interfaces to a single instance, Internal Elastic Load Balancers, Advanced Network Access Control ,Setup a secure bastion host , DHCP options , Predictable internal IP ranges , Moving NICs and internal IPs between instances, VPN connectivity, Heightened security etc. Each and everything is a interesting topic on its own and i will be discussing them in detail in future. 

Today i am sharing some of our implementation experience on working with hundreds of Amazon VPC deployments as best practice tips for the AWS user community. You can apply some of the relevant ones in your existing VPC or use these points as part of your migration approach to Amazon VPC.

Please also look into 27 Best practices on AWS Security Groups to understand the relation with Amazon VPC. 
http://harish11g.blogspot.com/2015/06/best-practices-tips-on-amazon-web-services-security-groups-aws-security-managed-services.html

Practice 1) Get your Amazon VPC combination right: Select the right Amazon VPC architecture first.  You need to decide the right Amazon VPC & VPN setup combination based on your current and future requirements. It is tough to modify/re-design the Amazon VPC at later stage, so it is better to design it taking into consideration your NW and expansion needs for next ~2 years. Currently different types of Amazon VPC setups are available; Like Public facing VPC, Public and Private setup VPC, Amazon VPC with Public and Private Subnets and Hardware VPN Access, Amazon VPC with Private Subnets and Hardware VPN Access, Software based VPN access etc. Choose the one which you feel you will be in next 1-2 years.

Practice 2) Choose your CIDR Blocks: While designing your Amazon VPC, the CIDR block should be chosen in consideration with the number of IP addresses needed and whether we are going to establish connectivity with our data center. The allowed block size is between a /28 netmask and /16 netmask. Amazon VPC can have contain from 16 to 65536 IP addresses. Currently Amazon VPC once created can't be modified, so it is best to choose the CIDR block which has more IP addresses usually. Also when you design the Amazon VPC architecture to communicate with the on premise/data center ensure your CIDR range used in Amazon VPC does not overlaps or conflicts with the CIDR blocks in your On premise/Data center. Note: If you are using same CIDR blocks while configuring the customer gateway it may conflict.
E.g., Your VPC CIDR block is 10.0.0.0/16 and if you have 10.0.25.0/24 subnet in a data center the communication from instances in VPC to data center will not happen since the subnet is the part of the VPC CIDR. In order to avoid these consequences it is good to have the IP ranges in different class. Example., Amazon VPC is in 10.0.0.0/16 and data center is in 172.16.0.0/24 series.

Practice 3) Isolate according to your Use case: Create separate Amazon VPC for Development , Staging and Production environment (or) Create one Amazon VPC with Separate Subnets/Security/isolated NW groups for Production , Staging and development. We have observed 60% of the customer preferring the second choice. You chose the right one according to your use case. 

Practice 4) Securing Amazon VPC : If you are running a machine critical workload demanding complex security needs you can secure the Amazon VPC like your on-premise data center or more sometimes. Some of the tips to secure your VPC are: 

  • Secure your Amazon VPC using Firewall virtual appliance, Web application firewall available from Amazon Web Services Marketplace. You can use check point, Sophos etc for this
  • You can configure Intrusion Prevention or Intrusion Detection virtual appliances and secure the protocols and take preventive/corrective actions in your VPC
  • Configure VM encryption tools which encrypts your root and additional EBS volumes. The Key can be stored inside AWS (or) in your Data center outside Amazon Web Services depending on your compliance needs. http://harish11g.blogspot.in/2013/04/understanding-Amazon-Elastic-Block-Store-Securing-EBS-TrendMicro-SecureCloud.html
  • Configure Privileged Identity access management solutions on your Amazon VPC to monitor and audit the access of Administrators of your VPC.
  • Enable the cloud trail to audit in the VPC environments  ACL policy's. Enable cloud trail : http://harish11g.blogspot.in/2014/01/Integrating-AWS-CloudTrail-with-Splunk-for-managed-services-monitoring-audit-compliance.html
  • Apply anti virus for cleansing specific EC2 instances inside VPC. Trend micro has very good product for this.
  • Configure Site to Site VPN for securely transferring information between Amazon VPC in different regions or between Amazon VPC to your On premise Data center
  • Follow the Security Groups and NW ACL's best practices listed below

Practice 5) Understand Amazon VPC Limits: Always design the VPC subnets in consideration with the expansion in the future. Also understand the Amazon VPC's limits before using the same. AWS has various limitations on the VPC components like Rules per security group, No of route tables and Subnets etc. Some of them may be increased after providing the request to the Amazon support team while few components cannot be increased. Ensure the limitations are not affecting your overall design. Refer URL:
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html

Practice 6) IAM your Amazon VPC: When you are going to assign people to maintain your Amazon VPC you can create Amazon IAM account with the fine grained permissions (or) use Sophisticated Privileged identity Management solutions available on AWS marketplace to IAM your VPC.

Practice 7) Disaster Recovery or Geo Distributed Amazon VPC Setup : When you are designing a Disaster Recovery Setup plan using VPC or expanding to another Amazon VPC region you can follow these simple rules. Create your Production site VPC CIDR : 10.0.0.0/16 and your DR region VPC CIDR:  172.16.0.0/16. Make sure they do not conflict with on premises subnet CIDR block in event both needs to be integrated to on premise DC as well. After CIDR blocks creation , setup a VPC tunnel between regions and to your on premise DC. This will help to replicate your data using private IP’s. 


Practice 8) Use security groups and Network ACLs wisely:  It is advisable to use security groups over Network ACLs inside Amazon VPC wherever applicable for better control. Security groups are applicable on EC2 instance level while network ACL is applicable on Subnet level.  Security groups are used for White list mostly. To blacklist IPs, one can use Network ACLs.

Practice 9) Tier your Security Groups : Create different security groups for different tiers of your infrastructure architecture inside your VPC. If you have Web, App, DB tiers create different security group for each of them. Creating tier wise security groups will increase the infrastructure security inside Amazon VPC.  EC2 instances in each tier can talk only on application specified ports and not at all ports. If you create Amazon VPC security groups for each and every tier/service separately it will be easier to open a port to a particular service. Don't use same security group for multiple tiers of instances, this is a bad practice. 
Example: Open ports for security group instead of IP ranges : For example : People have tendency to open for port 8080 to 10.10.0.0/24 (web layer) range. Instead of that, open port 8080 to web-security-group. This will make sure only web security group instances will be able to contact on port 8080. If someone launches NAT instance with NAT-Security-Group in 10.10.0.0/24, he won't be able to contact on port 8080 as it allows access from only web security group. 

Practice 10 ) Standardize your Security Group Naming conventions : Following a security group naming conventions inside Amazon VPC will improve operations/management for large scale deployments inside VPC. It also avoids manual errors, leaks and saves cost and time overall.
For example: Simple ones like Prod_DMZ_Web_SG or Dev_MGMT_Utility_SG (or) complex coded ones for large scale deployments like
USVA5LXWEBP001- US East Virginia AZ 5 Linux Web Server Production 001
This helps in better management of security groups. 

Practice 11) ELB on Amazon VPC:  When using Amazon ELB for Web Applications, put all other EC2 instances( Tiers like App,cache,DB,BG etc)  in private subnets as much possible. Unless there is a specific requirement where instances need outside world access and EIP attached, put all instances in private subnet only. Only ELBs should be provisioned in Public Subnet as secure practice in Amazon VPC environment.

Practice 12) Control your outgoing traffic in Amazon VPC: If you are looking for better security, for the traffic going to internet gateway use Software's like Squid or Sophos to restrict the ports,URL,Domains etc so that all traffic go through the proxy tier controlled and it also gets logged. Using these proxy/security systems we can also restrict the unwanted ports, by doing so,  if there is any security compromise to the application running inside Amazon VPC they can be detected by auditing the restricted connections captured from the logs. This helps in corrective security measure. 

Practice 13) Plan your NAT Instance Type: Whenever your Application EC2 instances residing inside private subnet of Amazon VPC are making Web Service/HTTP/S3/SQS calls they go through NAT instance. If you have designed Auto scaling for your application tier and there are chances ten's of app EC2 instances are going to make lots of web calls concurrently, NAT instance will become a performance bottleneck at this juncture. Size your NAT instance capacity depending upon application needs for avoiding performance bottlenecks. Using the NAT instances provides us with advantages of saving cost of Elastic IP and provides extra security by not exposing the instances to outside world for accessing the internet. 

Practice 14) Spread your NAT instance with Multiple Subnets: What if you have hundreds of EC2 instances inside your Amazon VPC and they are making lots of heavy web service/HTTP calls concurrently. A single NAT instance with even largest EC2 size cannot handle that bandwidth sometimes and may become performance bottleneck. In Such scenarios, span your EC2 across multiple subnets and create NAT's for each subnet. This way you can spread your out going bandwidth and improve the performance in your VPC based deployments.

Practice 15) Use EIP when needed: At times you may need to keep a part of your application services to be kept in Public subnet for external communication. It is recommended practice to associate them with Amazon Elastic IP and white list these IP address in the target services used by them 

Practice 16) NAT instance practices : If needed, enable Multi factor authentication on NAT instance. SSH and RDP ports are open only on sources and destination IP's, not global network (0.0.0.0/0). SSH / RDP ports are opened only on static exit IP's not dynamic exit IP's.  

Practice 17) Plan your Tunnel between On-Premise DC to Amazon VPC: 
Select the right mechanism to connect your on premises DC to Amazon VPC. This will help you to connect the EC2 instance via private IP's in a secure manner. 
  • Option 1: Secure IPSec tunnel to connect a corporate network with Amazon VPC (http://aws.amazon.com/articles/8800869755706543
  • Option 2 : Secure communication between sites using the AWS VPN CloudHub (http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPN_CloudHub.html)
  • Option 3: Use Direct connect between Amazon VPC and on premise when you have lots of data to be transferred with reduced latency (or) you have spread your mission critical workloads across cloud and on premise. Example: Oracle RAC in your DC and Web/App tier in your Amazon VPC. Contact us if you need help on setting up direct connect between Amazon VPC and DC.

Practice 18) Always span your Amazon VPC across multiple subnets in Multiple Availability zones inside a Region. This helps is architecting high availability inside your Amazon VPC properly. Example: Classification of the VPC subnet : WEB Tier Subnet : 10.0.10.0/24 in Az1 and 10.0.11.0/24 in Az2, Application Tier Subnet :  10.0.12.0/24 and 10.0.13.0/24, DB Tier Subnet :  10.0.14.0/24 and 10.0.15.0/24, Cache Tier Subnet : 10.0.16.0/24 and 10.0.17.0/24 etc

Practice 19) Good security practice is that to have only public subnet with route table which carries route to internet gateway. Apply this wherever applicable.

Practice 20) Keep your Data closer : For small scale deployments in AWS where cost is critical than high availability, It is better to keep the Web/App in same availability zone as of ElastiCache , RDS etc inside your Amazon VPC. Design your subnets accordingly to suit this. This is not a recommended architecture for applications demanding High Availability.

Practice 21) Allow and Deny Network ACL : Create Internet outbound allow and deny network ACL in your VPC. 
First network ACL: Allow all the HTTP and HTTPS outbound traffic on public internet facing subnet. 
Second network ACL: Deny all the HTTP/HTTPS traffic. Allow all the traffic to Squid proxy server or any virtual appliance. 

Practice 22 ) Restricting Network ACL : Block all the inbound and outbound ports. Only allow application request ports. These are stateless traffic filters that apply to all traffic inbound or outbound from a Subnet within VPC. AWS recommended Outbound rules : http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_NACLs.html

Practice 23) Create route tables only when needed and use the Associations option to map subnets to the route table in your Amazon VPC

Practice 24) Use Amazon VPC Peering (new) : Amazon Web Services has introduced VPC peering feature which is quite useful one. AWS VPC peering connection is a networking connection between two Amazon VPCs that enables you to route traffic between them using private IP addresses. Currently it can be in same AWS region, Instances in either VPC can communicate with each other as if they are within the same network. Since AWS uses the existing infrastructure of a VPC to create a VPC peering connection; it is neither a gateway nor a VPN connection, and does not rely on a separate piece of physical hardware (which essentially means there is no single point of failure for communication or a bandwidth bottleneck).
We have seen it is useful in following scenarios :
  1. Large Enterprises usually run Multiple Amazon VPC in single region and some of their applications are so interconnected that they may need to access them privately + securely inside AWS. Example Active Directory, Exchange, Common business services will be usually interconnected.
  2. Large Enterprise have different AWS accounts for different business units/teams/departments , at times systems deployed by some business units in different AWS accounts need to be shared or need to consume a shared resource privately. Example: CRM , HRMS ,File Sharing etc can be internal and shared. In such scenarios VPC peering comes very useful.
  3. Customer can peer their VPC with their core suppliers to have tighter integrated access of their systems.
  4. Companies offering Infra/Application Managed Services on AWS can now safely peer into customer Amazon VPC and provide monitoring and management of AWS resources.
Practice 25) Use Amazon VPC: It is highly recommended that migrate all your new workloads inside Amazon VPC rather than Amazon Classic Cloud. I also strongly recommend to migrate your existing workloads from Amazon Classic cloud to Amazon VPC in phases or one shot which ever is feasible. In addition to the benefits of the VPC that is detailed in the start of the article, AWS has started introducing lots of features which are compatible only inside VPC and in the AWS marketplace as well there are lots of products which are compatible only with Amazon VPC.  So make sure you leverage this strength of VPC. If you require any help for this migration please contact me. 


readers feel free to suggest more.. I will link relevant ones in this article

14 comments:

Deep said...

Good read. Thanks for putting this together.

solar energy said...

congratulations guys, quality information you have given!!! Big Data and Analytics

farhan naqvi said...

Very informative ... Detailed description helps a lot to new learners. Thanks a lot buddy.

farhan naqvi said...

Very informative blog ... Good for new AWS learners. Thanks buddy .

Data Centers said...

Great post! Been reading a lot about making these kinds of data systems work well. Thanks for the info!

Bhavna Singh said...

Informative post for virtual private server and cloud storage. Thanks for sharing quality post.

Ronan said...

Practice 19 should probably specify creating one public subnet per AZ rather than just one per VPC. This will allow for highly available public facing services.

Kendrick Segers said...

"Very good post...well i think writing this kind of article is a tough job.Thanks for your blog.

cellular data systems

Anonymous said...

Very informative overview covering basics of VPC configuration, must-haves, and pointers to products and services. Thanks!

Anonymous said...

Great Article. Thanks for explaining with example otherwise it would have been little bit confusing.

Anonymous said...

Love the article. Solved some simple concept and thanks for putting all together.

altered82000 said...

Is the standard AWS firewall not good enough? Why use a third party? For logging?

Muthukumar .L said...

Hi,
Thanks for your clean and neat explanation on AWS-VPC
Cheers............

Anonymous said...

Hello,

This is a great post and informative that explains best practice creating VPC.

Need Consulting help ?

Name

Email *

Message *

DISCLAIMER
All posts, comments, views expressed in this blog are my own and does not represent the positions or views of my past, present or future employers. The intention of this blog is to share my experience and views. Content is subject to change without any notice. While I would do my best to quote the original author or copyright owners wherever I reference them, if you find any of the content / images violating copyright, please let me know and I will act upon it immediately. Lastly, I encourage you to share the content of this blog in general with other online communities for non-commercial and educational purposes.

Followers